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Abstract

An explicit, second-order accurate, total variation

diminishing (TVD) scheme and the MacCormack scheme are applied

to the Euler equations in axisymmetric form to study

I hypersonic blunt-body flows. The modified-flux approach of

Harten, with modification by Yeel, for two-dimensional flows

is extended to treat axisymmetric flows. Calculated flow

properties for the steady-state, blunt-body problem such as

shock standoff distance, bow-shock shape, surface pressure

I distribution and entropy jump conditions are compared to

theory, results of the MacCormack scheme, and experimental

data for Mach numbers of 3.C, 4.03, 5.06, 6.03 and 8.1.

5 Additionally, the TVD and MacCormack schemes are used to

simulate numerically the unsteady shock lipingement on a

I sphere. Results are compared to experimental data for a shock

Mach number of 2.89. Analysis of the numerical simulations

provide suitable ranges of values for the entropy correction

parameter and the Courant (CFL) number. A brief comparison of

limiters for the unsteady problem is also presented. The

I high-resolution, shock-capturing capability and robustness of

the TVD scheme is clearly shown.

I

I
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ANALYSIS OF HYPERSONIC BLUNT-BODY FLOWS
USING A

TOTAL VARIATION DIMINISHING (TVD) SCHEME
AND THE

MACCORMACK SCHEME

I. Introduction

Programs of national significance such as the National

Aerospace Plane (NASP), the Strategic Defense Initiative (SDI)

and the Aeroassisted Orbital Transfer Vehicle (AOTV) have

renewed interest in hypersonic aerodynamics. Hypersonic wind

tunnels and ground-test facilities developed in the 1960's

I- during the initial era of hypersonics research interest fell

into disuse following the drastic funding cuts of the 1970's

and are just now being rebuilt and refurbished2. Due to these

constraints on physical testing of hypersoaic vehicle models,

numerical simulations become particularly important.

I Computational fluid dynamics (CFD) offers immediate means for

hypersonic aerodynamics research, development and design for

a number of reasons. There are three main advantages of CFD

over field tests and laboratory experiments
3:

1) lower cost,
2) increased data collection capability - virtually

any flow quantity can be computed in the field of
interest, and

3) exact repeatability, precise control over initial
and boundary conditions, and the related capability
to independently vary important parameters.

I
U
I
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i Blunt-body flows are of particular interest because

hypersonic vehicles are designed with blunt noses to reduce

aerodynamic heating. The solution of the Euler equations of

fluid flow in the nose region of a blunt-body, such as those

presented in this study, provide numerical estimates of shock

standoff distance, bow-shock shape, and surface pressure

distributions. Additionally, these solutions provide edge

properties for input to boundary layer codes, which in turn

can provide estimates of heat transfer and skin friction. In

the study of transient flow phenomena, application of the

i numerical schemes to the unsteady shock impingement problem

can provide pressure and density contours about a sphere as a

I blast-wave passes over it. This ability to accurately

* simulate the complex shock-diffraction process is particularly

important for the analysis of a building's ability to maintain

* structural integrity during the passage of a blast-wave from

a nuclear explosion.

1.1 TVD and MacCormack Scheme Background

In this section, the background information is condensed

from the excellent survey reported by Yee in Reference 1.

For complex flowfields, monotone and first-order upwind

schemes are too diffusive. Monotone schemes produce smooth

transitions near discontinuities, but they are only first-

order accurate. High-resolution shock-capturing numerical

simulations are not possible with these schemes on grids of

2I

I
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I reasonable size. Schemes of higher-order accuracy have been

U developed over the past decade and the development of such is

an area of active research.

* Classical shock-capturing schemes use linear numerical

dissipation - the same amount everywhere or consists of

I adjustable parameters for each problem. Modern schemes employ

numerical dissipation in a nonlinear fashion - the amount

varies from grid point to grid point and is implemented

automatically within the scheme with few, if any, adjustable

parameters. This technique was developed to overcome the

* following deficiencies:

1) development of spurious oscillations whenever the
solution is not smooth,

2) development of nonlinear instabilities when
discontinuities are encountered, and

3) the selection of a nonphysical solution.

Total variation diminishing (TVD) schemes are a class of

5 modern, high-resolution, shock-capturing schemes introduced by

Harten4. A main objective of this class of schemes is to

I ensure that solutions of the Euler equations converge to

5 physically correct solutions. This is extremely important if

one 4s dealing with fluid flows for which analytic solutions

or experimental data are not readily available. The basic

idea behind the notion of a TVD property is that the total

I variation of the numerical solution of an initial-value

* problem will not grow as the solution evolves in a time-like

fashion. See Reference 4 for precise mathematical details.

I

I
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I It should be emphasized that the TVD property is only valid

for systems of homogeneous scalar hyperbolic equations. For

nonhomogeneous hyperbolic equations, in order for the source

3 term to not influence the TVD property, it is restricted to a

special class of functions and fluid flowsi. For finite-

volume, upwind TVD schemes, similar to the one employed in

this study, Wang and Widhopf5 prove the TVD property is

satisfied for the axisymmetric version of the Euler equations

3 written in conservation form.

The MacCormack scheme has been an industry standard for

* many years and details of the numerical algorithm other than

boundary conditions are not reported in this study. The

scheme has been applied to a wide variety of fluid flow

3 problems. Application of the scheme to the Navier-Stokes

equations for axisymmetric flows with finite-rate chemical

kinetics has been reported by Shang and Josyula6 . The

MacCormack scheme applied to the Euler equations in

axisymmetric form was used for this study.

3 As will be shown in the sections forthcoming,

comparisons between flowfield properties computed with the TVD

scheme and the MacCormack scheme are very good. Comparisons

between the schemes, theory, and experiment are also very

Igood.

4
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I 1.2 Problem Statement

3 The main objectives of this study are to show the high-

resolution and robustness capabilicies of the two-dimensional

3 TVD scheme extended to axisymmetric form. Applications to the

steady-state, blunt-body problem and the problem of unsteady

I shock impingement on a sphere provide a wide range of

flowfield features possible with the Euler equations.

Furthermore, within the context of each application, suitable

values of parameters inherent to using the scheme, such as

Courant (CFL) number, entropy correction parameter, 8P I

appropriate limiters as well as boundary and initial

conditions, are numerically investigated.

I For the steady-state, blunt-body problem, flowfield

3 quantities computed with the TVD scheme will be compared to

theory, experimental data, and results of the MacCormack

3 scheme. Specific items considered are the shock standoff

distance, bow-shock shape, body surface pressure distribution,

* and the entropy jump condition.

5 For the unsteady impingement of a shock on a sphere,

flowfield quantities computed with the TVD scheme will be

compared to theory and experimental data. Specific items

considered are the density and pressure distributions in the

i flowfield and the resolution of the complex interactions.

I
I
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II. AnalysisI
A discussion of the governing equations, the

3 transformation from the physical domain to the computational

domain, boundary conditions, initial conditions, theoretical

predictions, and a description of the convergence criteria

* will be presented in the next few sections.

2.1 Governing Equations

The Euler equations are statements of conservation of

mass, momentum and energy. These principles are:

1) mass can be neither created nor destroyed,
2) the time rate of change of momentum of a body

equals the net force exerted on it, and
3) energy can be neither created nor destroyed; it can

only change in form.

The properties of the fluid medium are characterized by

3 density p, the pressure p, the internal energy per unit

mass e, and the fluid velocity u as functions of position and

3 time. An equation of state is assumed of the

form e = f(p,p). Additionally, it is assumed that no viscous

forces, body forces, heat conduction or energy sources are

3 present. The conservation form of the two-dimensional Euler

equations can be given in conservative variables

3 p, pu, pv, and E.. The equations have the ability to describe

internal discontinuities such as shock waves

(where p, pu, pv, and e are discontinuous) and contact

3 surfaces (where p, and e are discontinuous) which are

6
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I frequently encountered in fluid flow8'9. The Euler equations

can be written in flux vector form:

au + &E(U) + aF(U) (
a x ay

where

(p + M2 / p) yP

IEY mt,]rx/P (E, + p) yo

F (P + my/p)Y P  O0

my/p (E, + p) yI

and 13 = 0,1 for two-dimensional and axisymmetric cases,

5 respectively; mx = pu, my = pv, the total energy, Et, is

2 2

Et = pe + hmx +m (3)

I and pressure is given as

p = (y-l)pe (4)

I
I
I

7
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1 2.2 Coordinate Transformation

SFor the numerical solution of these partial differential

equations (PDEs), it is imperative that boundary conditions be

accurately represented. In fact, the boundary conditions are

what differentiate one fluid flow problem from another, as far

as the governing equations are concerned 0 . In general, the

3 Cartesian coordinate system is limited in usefulness to

configurations that can be represented by a rectilinear shape.

I For a more general body shape, a transformation of the

governing equations to a curvilinear, boundary-conforming

system is more appropriate. A transformation of the

form = E(x,y) and q = q(x,y) is used to map Eq (1) from a

general physical domain (x,y) to a rectangular computational

I domain (E,q) as illustrated in Figure 1. The transformed

strong conservation form of the Euler equations, assuming the

computational grid is fixed in time, is

I aO+ a( + -# (5)

at ax ay

i where

I E=J(t E + ",F) (6)

f~ J(qxE + ryE)3=3

i and J = xy 1 - x y, is the Jacobian of the transformation. The

8

I
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solution via Roe's approximate Riemann solver11 (sometimes

referred to as the "local characteristic approach") requires

evaluation of the Jacobians A and B of E and F. Through the

application of the chain rule these can be written as

S: ( ,xA + YB) (7)

01(,A + rnyB)

where A = aE/aU and B = aF/aU. The eigenvalues of A and B are

hxu + hv + khc

Ix + hYv

where

h = for (9)
h = q forB

and

hxu + hyv = UC

c = V7 (10)

kh = hX+h

where U, is referred to as the contravariant velocity. The

contravariant base vectors of the curvilinear coordinate

system are normal to the coordinate surfaces12 , and the

contr~variant velocities are the inner product of the base

vectors with the velocity vector.

10



The right eigenvectors of A and B, (R', R', R', R'), are

1.0 1.0
u - kh1C 2u

Rh= v - kh2c Rh= v
H v- kh 2 C 1 kh2V2I. 12

I 1.0 0.0
3 u + kh1C 4 -kh2R = v+khlc R =(11)
Rh v +kh2 c Rh= kkhl

H + khluc + kh 2VC khlv-kh2 u

where

H H- yp + (U u 2 +v2 )

(y-1) p 2hx hxkh = Ih 2  kh  (12)
_h hy _hy

I
Furthermore, the total enthalpy and the speed of sound can be

I written in terms of the conserved variables as

SH = (Et +P)

p = (y-1) (Et - (mx + m2)/(2p)) (13)IC = (y-1) (H - (m2 + m2)/(2p2))

For the actual implementation of the equations, the flow

quantities were nondimensionalized in a consistent fashion as

shown in the Appendix.

Ii



2.3 Boundary Conditions

The finite-volume TVD scheme constructs cells using node

points as vertices in the physical domain. The ensuing grid

of cell centers is then used for actual calculations.

Furthermore, mirror images (referred to as ghost points in

this study, sometimes also referred to as phantom points) are

placed at cell centers just outside the physical domain to aid

in the enforcement of the boundary conditions. The finite-

difference MacCormack scheme, however, uses actual node points

for calculations and does not use ghost points.

A general mapping of the physical domain to the

computational domain was illustrated in Figure 1. The

physical domain shown was that for the steady-state

calculations whereby a blunt-body with a spherical nose is

modelled. Referring to Figure 1, the physical domain consists

I of:

1) a line of axisymmetry (front stagnation line),
2) a parabolic outer boundary where freestream conditions

are imposed,
3) a supersonic/hypersonic outflow boundary, and
4) the spherical body surface.

The parabolic shape of the outer boundary was selected based

on the fact that bow-shock shapes are parabolic. The intent

was to minimize the number of grid points between Lhe

I freestream boundary and the captured shock.

1
I

12
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I



For the unsteady calculations, the physical domain is a

half-circle (sphere) as will be shown in Section VI. The

i physical domain consists of:

1) front and
2) rear lines of axisymmetry (stagnation lines),
3) a circular outer boundary where freestream conditions

are imposed, and
4) the spherical body surface.

The boundary conditions are described in detail in the next

I few sections.

2.3.1. Line of Axisymmetry. For the TVD scheme, the

3 reflection principle was applied across the line of

axisymmetry. Derivatives of conserved variables normal to the

line of axisymmetry and the v comp-nent of velocity were

specified to vanish. Furth-i :r.ore, since the physical area on

i the line of axisymietry is zero, the flux at that cell

i interface was also set to zero. Exactly how this is

implemented in the numerical algorithm will be shown in

I Section IV. For the MacCormack scheme, a limiting form of the

governing axisymmetric equations, developed by Shang and

i Josyula6 , was used to overcome the geometric singularity at

the line of axisymmetry encountered in the finite-difference

formulation. As will be shown in the steady-state solutions

3 of the Euler equations in Section V, oscillations of flowfield

quantities in the stagnation region near the line of

3 axisymmetry are a common occurrence. In some cases, these

oscillations lead to numerical instabilities.

13
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i 2.3.2. Freestream. It is assumed that the parabolic

outer boundary for the steady-state, blunt-body problem, and

the circular outer boundary for the unsteady shock impingement

3 problem, are located sufficiently far away from the body

surface that freestream boundary conditions can be imposed.

3 For the unsteady calculations, it was necessary to track the

planar moving shock wave and impose pre- and post-shock

boundary conditions consistent with the Rankine-Hugoniot

relations for changes across a normal shock.

i 2.3.3. Outflow. The outflow boundary condition described

in this section pertains to the steady-state, blunt-body

problem shown in Figure 1. At the top of the sphere, the

fluid flow has accelerated to a supersonic Mach number from a

I subsonic Mach number in the nose region immediately behind the

normal shock. Two-point extrapolation was used for the

outflow boundary values in the TVD scheme. A "no-change" or

* one-point extrapolation method worked just as well and was

used in the MacCormack scheme. One advantage of ,wo-point

extrapolation is that contours of flowfield values are

smoother at the outflow boundary for relatively coarse grids.

This will be apparent in the Mach contour plots to be shown in

3 Section V.

I
I 14
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2.3.4. Body Surface. The following paragraph is quoted

directly from Anderson et a18 :

We now address the problem of applying surface boundary
conditions when shock-capturing methods are used. As
Moretti (1969) has pointed out, the correct application
of boundary conditions is a difficult task. Incorrect
wall conditions can provide locally polluted results
and in many cases can destroy a solution. Hyperbolic
equations are particularly sensitive. Due to their
wave-like nature, boundary errors are propagated
throughout the mesh reflecting until actual instability

I can result.

For these reasons, particular care was taken when selecting

I the following body surface boundary conditions.

At the sphere surface, a "no-flow through" condition was

imposed. That is, the normal component of velocity is set to

zero while the tangential component is preserved. For the TVD

scheme, ghost points inside the physical body surface were

3 used and these conditions are

I Un I  -Un 2  (14)

where j = 1 corresponds to the q coordinate in the radial

direction for the ghost point as shown in Figure 2. The

velocity values at the ghost point are determined by

[ -2cos~sin -sin 2 n + cos2 ]

I For the MacCormack scheme, the normal component of velocity at

i the node point on the surface is set to zero and the

I 15
I
I
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(1,2 ,

N/
( K>

I ",
I, U

I Figure 2. Body Surface "No-Flow Through" Boundary Condition

tangential component is set equal to the value at the first

node point off the surface.

i To obtain the pressure at the body surface, the normal

i momentum equation is used as recommended by Pulliam and

Steger 13 :

-PUc (I"Ut+I]YVt) = 1] x+ "1y + (I 2+I1 y) Pq16I1 _2 x 1 (16)I= P22 .l +2T 2

3 whern p, is the pressure normal to the body surface. Second-

I

I
I



order accurate central-differencing is used for

both and q direction derivatives and U¢ ,the contravariant

velocity, is given by

U, = + (17)

An adiabatic wall condition and the equation of state are

used to calculate the density. Even though the specification

of the temperature gradient at the body surface is

inconsistent wich the Euler equations, Pulliam and Steger13

report that it has been used by others with no apparent

degradation of the solution. A recent paper by Driver and

Beran14, using a TVD scheme similar to the one developed in

this study, used this same boundary condition for the blade

surface in a high-work, low aspect ratio turbine flow

numerical simulation. Their surface results were all well

within a few percent of experimental data. These results

would seem to justify the use of this particular boundary

condition. The total energy, E., is calculated from the

surface values of density, pressure, and velocity.

For the TVD scheme, the normal momentum equation is

applied at the first cell center off the body surface to

obtain values at the ghost point. For the MacCormack scheme,

the equation is applied at the first node point off the

surface to obtain values at the surface.

A reflection method was also investigated for the TVD

scheme whereby density and total energy at the ghost points

17
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were set equal to the values at the first cell center off the

body surface. This technique slightly overpredicted pressure

at the surface compared to pressure predicted by the

application of the normal momentum equation. Furthermore,

Roache15 has shown that the reflection method is an

inconsistent boundary condition for a curved surface and

should only be used for flat surfaces. Anderson et al8 also

I stipulate that the reflection boundary condition "is very

inaccurate on bodies in regions with high curvature."

2.4 Initial Conditions

Many numerical schemes are extremely sensitive to initial

* conditions and their effects on the transient or state-state

solution is an area of ongoing research. Care must be taken

to apply reasonable, physically realistic initial conditions

to start calculations16 . For these reasons, detailed

I discussions of the initial conditions for the steady-state and

* the unsteady computations will be presented in the following

sections.

2.4.1. Steady-State, Blunt-Body Problem. For numerical

* computations of the blunt-body problem in hypersonic flows,

many numerical procedures use theory to predict the shock

I- standoff distance and bow-shock shape, and then apply the

Rankine-Hugoniot relations and modified Newtonian theory to

provide a smooth initial state of flowfield quantities. In

U18
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this study, a first-order TVD scheme was employed to establish

an initial condition for the second-order TVD and MacCormack

schemes for a number of reasons. First of all, as part of the

evolutionary development of the second-order TVD scheme, a

first-order TVD scheme was constructed. It was a simple

* procedure to incorporate that solution as an initial state for

the second-order schemes. Secondly, that initial state

I contained a discontinuity in pressure at the stagnation point

I and an unsmooth flowfield as seen in the Mach contour values

(which will be shown in Section V). This provided a good test

of the robustness of the second-order TVD and MacCormack

schemes. Finally, theoretical solutions for an initial state

I of a general hypersonic blunt-body problem may not always be

readily available to a design engineer. The first-order TVD

scheme is very robust and can provide a rough prediction of a

blunt-body flowfield. Of course, any numerical solution

should be compared to related theoretical predictions to

Iensure that qualitative features are correctly modelled.
Within the first-order TVD scheme, the flowfield is

initialized to freestream conditions throughout and then run

for 500 iterations (time steps) with a CFL number of 0.9.

This technique is sometimes referred to as an impulsive start.

Peyret and Taylor16 report that Grossman and Moretti found that

an impulsive start tended to make transonic calculations

unstable while a gradual or ramped start worked reasonably

-- 19



well. This technique has also been employed in Program EAGLE
17

for transonic calculations in the form of gradual application

of the "no-flow through" body surface boundary condition. For

the supersonic/hypersonic numerical simulations in this study,

the impulsive start of the first-order TVD scheme was very

stable. The impulsive start procedure allowed a rough

development of the salient flow features - such as shock

I standoff distance and bow-shock shape - to take place. As

mentioned above, this solution constituted the initial state

used by the second-order TVD and MacCormack schemes. The

second-order TVD scheme was normally run for 500 to 1000

iterations with a CFL number of 0.5 before the convergence

criteria, to be discussed in the next section, were satisfied.

For the MacCormack scheme, at Mach numbers greater than 3.0,

it was necessary for stability to keep the CFL number at or

below 0.1. In addition, the smoothing coefficients for the

MacCormack scheme were set to 4.0. Comparison plots of the

initial state from the first-order TVD scheme and final

converged solutions from the second-order TVD and MacCormack

schemes will be presented in Section V.

2.4.2. Unsteady Shock Impingement Problem. For the

numerical simulation of the unsteady shock impingement on a

sphere, an initial shock location was assumed at x = -0.75 for

the Mach 2.89 case. Flowfield values are initialized to pre-

and post-shock conditions and the unsteady solutions are

20



I

impulsively started from that state. Because the dynamic

process of the shock striking and passing over and beyond the

sphere occurs on the order of milliseconds, the incident shock

wave can be approximated with good accuracy by a normal shock

wave18 . As mentioned in Section 2.3.2, it was also necessary

to track the shock along the outer boundary and impose pre-

and post-shock conditions there as the shock propagated in

time.

2.5 Theoretical Predictions

To ensure that the numerical simulations accurately model

the qualitative features of the steady-state, blunt-body

problem and the problem of unsteady shock impingement,

comparisons will be made to theoretical predictions in the

results sections. The next few sections present the theory.

2.5.1. Shock Standoff Distance. The inviscid flowfield

in the stagnation region between the shock and the body

surface for steady, axisymmetric flow about a blunt-body at

hypersonic Mach numbers is governed by the hypersonic boundary

layer equations. Furthermore, in the stagnation region, the

detached bow-shock wave is nearly normal and hence, the Mach

number is subsonic and the flow is considered incompressible.

I Shock standoff distance formulas are derived as functions of

the density ratio and the radius of the shock. The Rankine-

Hugoniot relation for the density ratio e = p-/p. across the

21



normal shock, in the limiting case of infinite Mach number and

for a value of the ratio of specific heats, y = 1.4, becomes

= = 0.167 (18)I Y+1

As reported by Reshotko19, Hayes derives the shock standoff

Sdistance, 8 , under these assumptions as

60 6I _ 1 
(19)Rs 1 + v/2-e-

where Rs = radius of the shock. Additionally, Truitt20 derives

the following formula for axisymmetric blunt-body flow:

80 -l+ - (R -)2 (20)RS (2-e)

It is readily apparent that an increase in density in the

stagnation region will decrease the shock standoff distance

for both theoretical formulas. This behavior will be shown in

the tabulated results in Section V. For the Mach numbers

considered, the density ratio was calculated from the normal

shock relations as tabulated in NACA Report 113521. Anderson

has an excellent discussion and derivation of the limiting

form of the hypersonic shock relations in Reference 10.

22



2.5.2. Modified Newtonian Theory. Also in Reference 10,

3 Anderson provides the following historical perspective:

In Propositions 34 and 35 of his Principia,
first published in 1687, Newton modeled a fluid
flow as a stream of particles in rectilinear
motion, much like a stream of pellets from a
shotgun blast which, when striking a surface,
would lose all their momentum normal to the
surface but would move tangentially to the
surface without loss of tangential momentum.

This led to the famous newtonian sine-squared law for

pressure coefficient

Cp = 2sin2 0 (21)

where 0 is the local deflection angle of the surface.

Anderson also rports the Lester Lees modification to

Newtonian the' y which gives the pressure coefficient as

Cp = Cp sin2 6 (22)

C". is the maximum value of the pressure coefficient,

evaluated at a stagnation point behind a normal shock wave

given as

P tstag p

1 V2 (23)

where Pt,ag is the total pressure behind the normal shock wave

at the freestream Mach number. For the Mach numbers

considered, Pttaq was determined from the tabulated normal

shock relations in NACA Report 113521.
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2.5.3. Entropy Jump Condition. The theory presented in

this section is from Reference 7. From the second-law of

thermodynamics, the entropy always increases across a shock

wave. With the assumption of a calorically perfect gas, in

which the coefficients of specific heat are constant, the

first-law of thermodynamics provides the increase in entropy

as

As = cp1n(- -ta ) - Rln(--t "&) (24)

where As = the change in entropy from freestream to that

behind the shock, T. = total temperature, R = gas constant,

PC = total pressure and the subscripts Stag and - represent

stagnation and freestream quantities, respectively.

For a stationary normal shock and a non-chemically

reacting gas

Ttstag =77T. (25)

and Eq (24) becomes

As = ln( - ) (26)R P stg

As mentioned in the previous section, NACA Report 113521 values

were used to determine the pressures and hence the theoretical

entropy jump condition.
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2.5.4. Shock Impingement on a Sphere. Exact theoretical

solutions of the dynamics of a planar moving shock wave

striking and passing over a sphere do not exist. Approximate

theories due to Whitham and to von Neumann are presented by

Bryson and Gross22 and Heilig23, respectively. Their

approximate natures only reveal the gross structure of the

shock diffraction process. Thus, only qualitative features

from these theories can be described. The following

qualitative description of the time evolution of the shock-

diffraction process for a cylinder or a sphere is taken from

Young and Yee18, Bryson and Gross2 , Heilig23 , Yee and Kutler24,

25and Takayama

The shock structure at two instances of time, ti and t2.

after initially striking the sphere, is shown in Figure 3.

This illustration is for an incident shock of low Mach number

with single Mach reflection. When the planar moving shock

hits the sphere, regular reflection occurs at the shock

impingement point. The reflected shock emerges as a highly

curved bow-shock. The shock curvature induces an entropy

gradient downstream which, in turn, introduces vorticity into

the initially irrotational flowfield. As the shock

impingement point propagates around the body, the reflection

process transitions from regular reflection to Mach

reflection. Depending on the initial strength of the shock

wave, complex and double Mach reflection shock structures are

25
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Figure 3. Shock Diffraction Process at Two Instances in
Time

also possible during the transition process. For single Mach

reflection, a triple point forms and the incident shock no

longer touches the body. Three waves emanate from the triple

point:

1) a Mach stem (strong shock) which impinges normal to
the body surface,

2) a slip surface or shear layer which strikes the body
and results in a vortical singularity (nodal point
of streamlines), and

3) the reflected shock which moves away from the
sphere.

Additionally, a stagnation point (saddle point of streamlines)

exists at the lines of axisymmetry, both fore and aft of the

sphere.

3For double Mach reflection, an irregular reflection

occurs in the vicinity of the triple point which causes a
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I

I

I

IFigure 4. Double Mach Reflection, Mach 3.36

I splitting into two triple points - usually for incident shocks

greater than about Mach 1.4. Figure 4 presents a Schlieren

photograph from Reference 23 that illustrates this phenomena.

5 Whereas the Mach stem fhock is newly created and was not

present before, the reflected shock of the irregular

* reflection phase will interact with the remaining reflected

shock of the regular reflection phase. It cannot be assumed

that both shocks will go together either in their inclinations

3 or in their strengths. Hence, their intersection appears as

a small kink which starts at a new triple point and ends at

I
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I the original triple point. If two shocks with unequal slopes

interact in two dimersions, a new shock, "the second Mach

shock," and a new slip line, "the second slip line", are

3 created. The high-resolution capability of the TVD scheme

captures this phenomena as will be shown in Section VI.

2.6 Convergence Criteria

One of the convergence criteria for the TVD and the

MacCormack scheme was the Euclidean L2 norm given as

(L2 (U2 Uj) 2 ) 2 (27)
i j=1 i=1

where I and J correspond to the maximum number of grid lines

I in the circumferential and radial directions, respectively,

g and where Uj is the vector of unknowns given by Eq (2). For

the steady-state computatioais, a reduction of the L2 norm by

3 three to four orders of magnitude from that at the initial

state was considered a converged solution. Additionally, the

I- variation of the stagnation pressure and the shock standoff

3distance was monitored. These values stabilized quickly, and

the L2 norm was the final convergence criterion. For the

unsteady shock impingement computations, the L2 norm was

monitored and stable values were of order one.

2
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III. Experimental Data
i

For the steady-state blunt-body problem, the experimental

3 data consists of graphical results for shock standoff distance

and tabulated results for wave shape and surface pressure

-- distributions about the nose of AGARD Model E, a hemisphere

3 cylinder configuration. The tests were conducted in the von

Karman Gas Dynamics Facility (VKF) at the Arnold Engineering

3 Development Center at Mach numbers 3.0, 4.03, 5.06, 6.03, and

8.1 at zero angle of attack. The experimental shock standoff

distance and wave shape coordinates were obtained in the

3 report from scaled Schlieren photographs. Model pressures

were measured with a system of 15-, 5-, and 1-psid transducers

connected to orifices along the body. Figure 5 shows

excellent agreement between the experimental surface pressures

i and that predicted by modified Newtonian theory, Eq (22).

3 Complete details of the test can be obtained in Reference 26.

For the unsteady shock impingement on a sphere, the

3 experimental data for visual comparison consists of Schlieren

photographs of the diffraction patterns at a time when the

i_ incident shock had passed beyond the aft end of the sphere.

-- "An English table-tennis ball of 1 in. diameter filled with

Wood's metal and suspended in the test section from 8 nylon

3 strings was used for a sphere22.'' The tests were conducted at

Harvard University with a shock Mach number of 2.89

i
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I



SC, -I

d Md ified N~ewtonIa r,
!UU LZAEDC Data

-, Mach .

I \\

I \

I ' .) - I I i I r -
0 45.0 90.0

e

Figure 5. Surface Pressure Distributions, Modified
Newtonian Theory and AEDC Data, Mach = 3.0

in a shock tube in air. General features of the shock

diffraction process, as discussed in Section 2.5.4, are

readily discernible in the Schlieren photographs to be shown

in Section VI.
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IV. Numerical Algorithm Development

An explicit, second-order accurate, upwind, TVD scheme

originally developed by Harten and modified by Yee' for two-

dimensional flow was extended to axisymmetric flow in this

study. An excellent review of TVD schemes and their

development can be found in Reference 1. Strang time-

splitting was used to maintain second-order time accuracy in

which the local characteristic solution L n2 i is computed

from o by

U + =L(L/'g h/2rn (28)

where 1 = iAE, Ti = jAq, h = At and

(h/
2 

ln A^nUf At n

h 2At (2, . . + At (29)

This sequence of operators is consistent if the sum of

the time steps for each of the operators are equal. Second-

order time accuracy is obtained if the operators are applied

in a symmetric sequence8. Furthermore, the time-splitting

allows one to handle the homogeneous part of the governing

partial differential equations and the source term in separate

steps. The functions E. 1, and F. .1 are the numerical
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fluxes in the and Ti directions, respectively. They are

evaluated at cell interfaces and can be written as

E., + 9., + (R)i 1
2 22 (30)

F.. 1 !F[9+, + (Rn~- j+ +~~i
2 2

* where (dropping subscripts for notational convenience)

-- 9= -y E + xF (31)

3 This formulation has the property of maintaining the

freestream, thereby eliminating the problem of delineating

3 physical flowfield structure from aberrations due to the

grid27 . In the discussion of boundary conditions in Section

1 2.3.1, it was stated that the flux at the line of axisymmetry

3was set to zero. For the front stagnation line with i = 2 (i

= 1 is the ghost point) the direction numerical flux becomes

3 1
Ei -L (Rt )1 (32)

2 2 2

with no change in the E3 numerical flux. In the unsteady

3 computations, for the rear stagnation line with i = I-1 (i =

I is the ghost point) the direction numerical flux becomes

EI_ : (Rt )Ii (33)
2 2

with no change in the _3 numerical flux. Roe's averaging
2

for a perfect gas11 is used to assess the eigenvalues and

32I
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eigenvectors at cell interfaces, because it has the

computational advantage of resolving stationary

discontinuities28 . The Roe averaged dependent variables are

given by

l Du,1 + Ui

i2-2 D+I
V Dv,+ + v,

12 D + 1

H.i = DH.1 + + H i

2 D+ 1

2+ = (y-1) [H.i - (Ui2 1  + Vi2+ ) ] (34)

where

D p 1i7/p (35)

The vector elements of (i'._l for the TVD scheme are
2

i 1 = o(V_1i )(g i i +g 1 ) -i (Vi1 + Yi_ )ai ! (36)
2 2 2 2 2

and 1 = 1 to 4 is consistent with Eq (2) and where, with

I=At/Ax

1v 1 = la 1 (37)

2 2
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ai,, is the difference of the characteristic variables
2

in the direction,

2 _ = RI7 (Uil - Ui) (38)52 2

The components of a are given by

a,

2 (aa - bb)/2'I a1 1  A.ip - a
2 + 2 (39)

a +1  (a+bb)/2

2cc

cc4a 15L 2

where

2 V2
1 2 + .

y- [A. e + 2 2 A p -u 1 iAiim -v'_+ A 1im
-2 2 2 2 2 2 2 2+ y

iC I
2

bb = 1 [khlAimx - (khlUi 1 + kh 2 Vi. ) Ai I p + kh 2Ai. mY]
2

cc = kh1Ai imy + (kh 2 Ui 1 - khlv. I ) Ai__p - kh2Ai. iM x
2 2 2 2 2

and

A._Iz Zi+1  - Zi (40)
2

The difference of the characteristic variables in the r7

direction is constructed similarly.
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I The function Y. is
2

(gi + 1 / 91 0

I ai = o( 2 (41)
2- 0 a 1

I i + =2
* 2

where

0(Z) = -[4i(Z) - Z 2 ]  (42)1 2

and

f(z) = (z 2 + 82) Iz < 8f (43)

I The functions o and * are referred to as the effective

I numerical viscosity coefficient and the numerical viscosity

coefficient, respectively4. The functional form of xP was

developed by Harten in Reference 4. It serves as an entropy

correction to Izj near 0 to prevent an entropy violation which

I occurs when Eq (42) vanishes. One can view the size of the

entropy correction function, 8. , as a measure of the amount

of numerical dissipation added. f = 0 is the least

I dissipative, and the larger the 8. the more dissipative the

scheme becomes. The numerical simulation of hypersonic

I blunt-body flows is especially sensitive to the magnitude of

I
35
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the entropy correction function. As reported in Reference 1,

Yee suggests the following form employed in this study:

(6f) +! 6: 6 (I (Uc) i+! + l( c i+-! + c.+! (44)
2 2 2 2

where 8P is the entropy correction parameter and uc and vc are

the contravariant velocities. Additionally, half of the sound

speed is from the E direction and the other half is from the

ri direction. The function 8f depends on the spectral radius

of the Jacobian matrices of the fluxes and is very useful in

terms of stability and convergence rate. Yee recommends

0.05 ! 8 0.25 for 4 M_ 25. For the nondimensional

quantities employed in this study, a consistent value

for 8P of 5.0 was used unless indicated otherwise. It should

be pointed out that smaller values slow down convergence for

the steady-state problem. As mentioned previously, larger

values of 8f add more numerical dissipation. An investigation

of these effects was conducted and 3.5 8,P 5.5 was found to

work quite well. Values lower than 5.0 dramatically slowed

down the convergence rate with only a slight increase in the

resolution of the shock as will be shown in Section V. For

instance, after 1000 iterations, a value of 5.0 reduced

the L2 norm three orders of magnitude. A value of 4.0 for the

same number of iterations did not reduce the L2 norm a single

order of magnitude.
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The function gI is the 'limiter' function which also

controls the amount of numerical dissipation added.

Hypersonic blunt-body flows with strong shock waves require

the proper selection of limiters. The limiter function has

been expressed in a number of different ways. This study

incorporates limiters appropriate for the characteristic

fields under investigation as recommended by Yeel. The

nonlinear fields correspond to 1 = 1 and 1 =3 and these waves

are either shocks or rarefaction waves. For the nonlinear

fields, a IR 1 
* 0, use

g1' = (a'. 1 a 1 + ai a )/( + a ) (45)
i i 2 2 2 i-2

The linearly degenerate fields correspond

to 1 = 2 and 1 = 4 and are uniquely contact discontinuities
4.

For the linearly degenerate fields, a1 R 1 = 0, use

g1 =minmod(a 1 + (46)
2 2

where the minmod function of a list of arguments is equal to

the smallest number in absolute value if the list of arguments

is of the same sign, or is equal to zero if any arguments are

of opposite sign. Limiters other than Eq (46) can produce

sharper discontinuities, but are not as robust. For the
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unsteady shock impingement problem, the following limiter was

used for the linearly degenerate fields

g1 =s -max[0,min(2ja'.,j,S"a a_),min(ja'.,j , 2 S - a_) (47)
2 2 2 2

where

S = sgn(ciW.1) (48)

A numerical investigation of the differences in resolution of

j flowfield discontinuities with these limitc-s will be

presented in Section VI. Finally, note that zeroth-order

extrapolation is used to obtain limiter values at ghost

points.

II
!
I
I
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V. Steady-State Solutions of the Euler EquationsI
Steady-state solutions obtained with the TVD and the

MacCormack schemes are presented in this section.

5.1 Computational Grid

Steady-state solutions were computed using the grid shown

in Figure 6. The grid consisted of 51 points in the

circumfcrential direction (I = 51) and 25 points in the radial

direction (J = 25). The body radius, RB, was scaled to a

nondimensional unit of 1. The spacing in the circumferential

direction at the line of axisymmetry was .02 RB , and the

spacing in the radial direction was .01 RB. A geometric

progression was used to control the radial spacing from the

body surface to the outer boundary and for the circumferential

spacing from the line of axisymmetry to the rear outflow

boundary. This allowed for clustering of node points in the

stagnation region. The location of the far-field boundary was

set to -1.4 RB along the line of axisymmetry and an outer

boundary with a parabolic shape was used.

5.2 Shock Standoff Distance and Wave Shape

To evaluate the performance of the TVD and MacCormack

schemes, comparisons of shock standoff distance and bow-shock

shape were made to theory and to experimental data. To

determine the shock standoff distance predicted by the

39



3.00

2.00 c

1.00

I -2.00 -1.00 0.00 1.00

IFigure 6. Computational Grid, 51 x 25

I schemes, plots of pressure along the line of axisymmetry were

used. An example of such a plot for the Mach 3.0 case is

shown in Figure 7. Note that the TVD data is from cell

centers and the MacCormack data is from node points. These

I expanded scale plots allow for an interpolation of the data to
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Figure 7. Pressure Along the Line of Axisymmetry, Second-
Order TVD and MacCormack Schemes, Mach = 3.0

i determine the shock standoff distance. In Figure 7, note that

the TVD scheme resolves the shock in fewer grid points than

I the MacCormack scheme. Typically, TVD schemes do much better

than this. It was mentioned in Section IV that the entropy

I correction parameter, 8P , affected the amount of numerical

dissipation added and, in turn, the resolution of shocks.

Values for 8p less than 5.0 tended to align the two points

3 around the shock with the pre- and prst-shock values. The net

result was resolution of the shock in a couple of grid points.

I However, the penalty paid was a dramatic decrease in the

convergence rate. For this study, the efficient calculation

41I
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I of solutions was a primary concern to the author. Most of the

numerical simulations were done interactively in a few

thousand iterations at most. Figure 8 shows a contour plot of

the entropy correction function given by Eq (44) for the Mach

3.0 case. it appears that the magnitude of the function is

I related to "position" in the physical domain. That is, 6f is

greater near the line of axisymmetry and decreases in the

vicinity of the shock where the shock strength decreases.

Figure 9 compares pressure plots along the line of axisymmetry

from the first-order TVD scheme to the second-order scheme for

the Mach 3.0 case. Note that the first-order TVD scheme

resolves the shock very well. However, the first-order scheme

does not do so well in the region between the shock and the

3 stagnation point.

I
I

i

I
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I Figure 9. Pressure Along the Line of Axisymmetry, First-
and Second-Order TVD Schemes, Mach = 3.0I

Table 1 presents a comparison of the calculated shock

standoff distances to theory from Section 2.5.1 and AEDC

I experimental data.

* Table 1
Shock Standoff Distance| 6 o/Rs

Mach=> 3.0 4.03 5.06 6.03 8.1

TVD .177 .144 .132 .126 .121

Eq(19) .151 .131 .122 .117 .106

Eq(20) .155 .134 .125 .119 .107

AEDC .179 .138 .126 .122 --
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I The TVD and MacCormack schemes compare quite well with

thecry and experimental data over a wide range of Mach

numbers. It should also be pointed out that for the

* experimental data the shock standoff distances were given in

graphical form. Hence, the three significant figures shown

* are uncertain.

The bow-shock shape was also predicted quite well by both

the TVD and MacCormack schemes. Figures 10 and 11 present

Mach contours - with the shock coordinates from the tabulated

experimental data superimposed - from the TVD and MacCormack

schemes, respectively. The TVD scheme Mach contours are much

"crisper" than those of the MacCormack scheme, especially in

the stagnation region. Also, smoother Mach contours at the

outflow boundary are obtained with the TVD scheme as shown in

Figure 10. This graphically illustrates the point made in

Section 2.3.3 concerning two-point extrapolation as opposed to

a "no-change" condition as the outflow boundary condition.

I Figure 12 presents Mach contours from the TVD solution at

a Mach number of 8.1. C-mpare this to Figure 10 and the

statement from Anderson°:

... as M. increases, the shock wave moves closer to the

body and the sonic points on both the shock and the body
move closer to the centerline - all standard physical
behavior for blunt-body flows. Furthermore, observe
that, as M_ increases, the sonic point on the shock moves
down faster than the sonic point on the body, and thus
the sonic line actually rotates in a counterclockwise
fashion as the Mach number increases.

I
I
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Figure 10. Mach Contours, TVD Scheme, Mach =4.03
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Figure 11. Mach Contours, MacCormack Scheme, Mach =4.03
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Figure 12. Mach Contours, TVD Scheme, Mach = 8.1

Furthermore, for two-dimensional flow about a cylinder, the

I angle that the sonic line makes with the body surface remains

acute - no matter how high the Mach number. For axisymmetric

flow about a sphere, that angle is acute at low Mach numbers

3 and becomes obtuse for Mach numbers approximately greater than
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U3.0. Figures 10 and 12 demonstrate that the axisymmetric TVD
* scheme correctly models this physical behavior.

5.3 Pressure DistributionI
To assess the performance of the TVD and MacCormack

schemes, numerically predicted surface pressure distributions

are compared to experimental data.

___" 2nd Order- T'L
I "st Order TVD

, ~ ~ 4. 90.0c 5C

Seon-Ode TD chmeMach = 3.

- t'
N\

I _

,.04 5.0 90.0,

I Figure 13. Surface Pressure Distribution, First- and

Second-Order TVD Schemes, Mach = 3.0

* Figure 13 presents pressure distribution calculations

from the first- and second-order TVD schemes compared to the

Iexperimental data at Mach 3.0. The solution procedure was;

run the first-order TVD scheme for 500 iterations at a CFL

number of 0.9, use that solution as an initial state for the
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second-order TVD scheme, and run the second-order TVD scheme

for as many iterations necessary (usually 500 to 1000) at a

CFL number of 0.5 until convergence. Convergence criteria

were presented in Section 2.6. In Figure 13, the first-order

TVD scheme solution has a pressure oscillation in the

stagnation region which underpredicts the stagnation pressure

and the scheme overpredicts the pressure distribution. The

second-order TVD scheme solution completely damps out the

oscillatory behavior and there is excellent agreement with the

experimental data. Similar results were obtained for Mach

I -D MacCorrr-ack
. 1st Or-Jr TVD

U Unm AEDC Data

N Maoch = 0

.I.0

_-__-T
, --I , - 1r. ... t ii

0, 45.0 90.0

Figure 14. Surface Pressure Distribution, MacCormack and
First-Order TVD Schemes, Mach = 3.0

numbers of 4.03, 5.06, 6.03, and 8.1. Figure 14 presents a

pressure distribution calculation from the -acCormack scheme
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compared to the experimental data at Mach 3.0. This solution

was obtained in 10,000 iterations with a CFL number of 0.5.

It was not possible to reduce the L2 norm convergence

criterion as low as that obtained with the TVD scheme. At

Mach numbers greater than 3.0, it was necessary to reduce the

CFL number to no more than 0.1 for stability. Furthermore,

after a few thousand iterations, an unphysical recirculation

region would develop in the stagnation region, resulting in an

accentuated bulge in the bow-shock shape and large pressure

oscillations about the stagnation point. This type of

behavior in the MacCormack scheme for the blunt-body problem

has been reported by Shang and Josyula6. In fact, the

accentuated bulge looks like an unsteady shock boundary layer

interaction ahead of a forward facing step as reported by

Saida et a129. The causes for this behavior are not completely

understood. To eliminate the possibility that the initial

state caused this behavior in the MacCormack scheme, a smooth

initial state was developed as described in Section 2.4.1.

Unfortunately, the recirculation region also developed from

this initial condition. An example of the onset of this

behavior is shown in Figure 15.
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Figure 15. Surface Pressure Distribution, MacCormack and
Second-Order TVD Schemes, Mach = 4.03

5.4 Entropy Jump Condition

It is well known that not all algorithms for the Euler

equations will compute the physically correct solution and

that an entropy condition is required to pick out the relevant

solution30.  The level of spurious entropy produced in the

stagnation region of a blunt-nosed configuration is a good

measure of a numerical scheme's accuracy 3
1 .
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I

I Table 2 compares theoretical results to that obtained

with the second-order TVD and MacCormack scheme.

Table 2
Entropy Jump Condition

As/R

Mach=> 3.0 4.03 5.06 6.03 8.1

Eq(26) 1.114 2.001 2.831 3.539 4.825

TVD 1.095 1.977 2.805 3.511 4.791

%Error -1.73 -1.18 - .93 - .78 - .70

Mac 1.1-33 2.027 2.875 3.579 --

%Error +1.60__ +1.30 +1.55 +1.14 --

Excellent agreement is obtained between the TVD scheme

and theory. The MacCormack scheme results are also quite

good, but stagnation point pressure oscillations were evident,

and the L2 norm had only been reduced two orders of magnitude

with the very restrictive CFL number necessary for stability.

Further iterations resulted in diverging behavior as mentioned

in the previous section.
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VI. Dynamic Solutions of the Euler Equations

The complex unsteady flowfield generated by the

impingement of a planar shock on a sphere is a good test case

for assesbing the time accuracy and shock-capturing capability

of the second-order TVD and MacCormack schemes. A discussion

of the time evolution of the shock diffraction process was

given in Section 2.5.4. Flowfield patterns, specifically

density and pressure contours, at different instances in time

for the Mach 2.89 case will be presented in the next two

sections. A comparison of limiter effects on the resolution

of the flowfield structure will also be presented.

Additionally, comparison to Schlieren photographs from the

Bryson and Gross22 experiments will be shown.

6.1 Computational Grid

The numerical simulations were obtained on the

cylindrical grid shown in Figure 16. The grid consisted of

251 evenly spaced points in the circumferential direction and

101 points in the radial direction. The spacing in the radial

Idirection off the body was .01 RB and a geometric progression
was used to control the spacing from there to the outer

boundary. The outer boundary had a radius of 2 body

diameters.

II
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I

I 6.2 Pressure and Density Flowfield Predictions

I The numerical simulations were started with the planar

shock located at x = -0.75 with a shock Mach number of 2.89.

I Pre- and post-shock conditions are imposed to the right and

left, respectively, of the shock location.

Figures 17 and 18 are density and pressure contours,

respectively, at selected times in the shock diffraction

process for the TVD scheme. The limiter used for the linear

I fields was given as Eq (47). The linearly degenerate fields

are uniquely contact discontinuities as described in Section

IV. Figures 19 and 20 are density and pressure contours,

respectively, at approximately the same selected times in the

shock diffraction process, for the MacCormack scheme.

I Figures 17a, 18a, 19a, and 20a show the reflected shock

I propagating away from the front of the sphere with the

incident shock attached to the body surface at the impingement

point. Note the smoother contours for the TVD scheme results.

In Figures 17b, 18b, 19b, and 20b, the impingement point

-- has evolved into the split triple point of a double Mach

reflection. This is barely discernible as the kink in the

reflected shock - incident shock intersection. Double Mach

*reflection involves double Mach stems and slip surfaces

(contact discontinuities). These will be referred to as

primary and secondary for the "upstream" and "downstream"

locations.
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The moment at which the incident shock and primary Mach

stem pass over the top of the sphere is a critical time for

the numerical simulations. The flow numerically overexpands

and the pressure becomes negative in some instances. This

problem has been reported for the numerical simulation of a

two-dimensional flow about a triangular obstacle with a

rounded top I using the MacCormack scheme. Variations of CFL

number and smoothing coefficients for that case only delayed

the onset of negative pressure. In this study, the MacCormack

scheme was used with a CFL number of 0.5 and values for the

smoothing coefficients of 3.0. Values of the smoothing

coefficients of 2.0 did result in the flow numerically

overexpanding just aft of the top of the sphere. The second-

order TVD scheme used approximately the same operating

parameters here as in the steady-state problem, i.e., CFL

number of 0.5 and 8P = 3.0.

Figure 17c, density contours from the TVD scheme, shows

the emergence of the primary slip surface just aft of the top

of the sphere. In Figure 17c, the slip surface has rolled up

into a vortex - not to be confused with the vortices that form

downstream of spheres due to separation. Figure 19c, density

contours for the MacCormack scheme at the same time instant,

does not resolve the slip surface as distinctly as the TVD

scheme. In the pressure contours for both schemes of Figures

18c and 20c, it is possible to see where the slip surface
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impinges the body. At that point, a local pressure minimum

occurs, and the pressure contours encircle it.

The density contours in the time intervals of Figures 17d

to 17f for the TVD scheme show the emergence of the secondary

slip surface. This is discernible as a "sinusoidally shaped"

kink in the contours. This surface does not roll up into

vortices like the primary slip surface does. The density

contours of Figures 19d to 19f for the MacCormack scheme do

not resolve the secondary slip surface.

Furthermore, during this same time, the secondary Mach

stem rotates clockwise down to the body surface and propagates

upstream within the reflected shock - body surface region.

The pressure contours in Figures 18d to 18f for the TVD scheme

and Figures 20d to 20f for the MacCormack scheme do not

resolve this phenomena. Figure 21 is a plot of the surface

pressure distributions which correspond to Figures 18d and 20d

for the TVD and MacCormack schemes, respectively. The TVD

scheme shows a small rise in the surface pressure at this

secondary Mach stem, just ahead of the shock impingement

point, at approximately 110 degrees from the front stagnation

point. The MacCormack scheme shows a gradual rise in the

surface pressure from this point to the shock impingement

point. Note also in Figure 21, for the MacCormack scheme, the

onset of pressure oscillations at the stagnation point similar

to those when the MacCormack scheme was applied to the steady-
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Figure 21. Surface Pressure Distribution, Second-Order TVD
Scheme (Time = 1.0667) and MacCormack Scheme (Time = 1.0642)

state problem. These stagnation point oscillations also

appear in the TVD scheme results as the shock impingement

point moves further aft toward the rear stagnation point.

Bennett et a132 came upon this same phenomena for shock

impingement on a cylinder using ARC2D - an inviscid, finite-

difference scheme based on the Beam-Warming algorithm.

Bennett et al extended the code to the Navier-Stokes equations

and found that the pressure oscillations were removed. An

interesting aside in the Bennett report was that the

experimental data obtained by Pearson at the Ballistic

Research Laboratory for the shock impingement on a cylinder
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had "substantial high frequency oscillations." These

oscillations were time-averaged for the final data set used in

the comparisons to the inviscid and viscous ARC2D numerical

predictions of pressure distributions.

A comparison of the effects of different limiters for the

TVD scheme can be seen in the density contours of Figure 22.

These were obtained at approximately the same time instant as

those of Figure 18d using the limiter of Eq (46) for the

linearly degenerate fields. This dissipative limiter barely

resolves the primary slip surface and totally ignores the

secondary slip surface. For this reason, the limiter of Eq

(47) is recommended.

200

(100 -

-200 -1.00 000 100 200IX
Figure 22. Density Contours, Second-Order TVD Scheme,

Limiter of Eq (46), Time = 1.1546

A comparison between the results from the TVD scheme and

Schlieren photographs from the Bryson and Gross 22 experiment

are shown in the density contours in Figure 23 and 24. These
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correspond to incident shock locations of approximately 1 and

1.3 body diameters aft of the center of the sphere,

respectively. The eight radial lines in the photos are nylon

strings used to support the sphere in the test section. The

triple points, slip surfaces, vortices, Mach stems, and

reflected shocks are all favorably resolved by the TVD scheme

when compared to the Schlieren photographs.

6.3 Comparison of Run Times and Time Step Count

A comparison of the run time for each time step and the

number of steps required to reach the same selected times for

the TVD and MacCormack schemes will be presented in this

section.

A Stardent GS-2000 Graphics Supercomputer of the

Aeronautics and Astronautics department of the Air Force

Institute of Technology was used for this study. The

numerical TVD soheme was optimized to allow for as much

vectorization as possible. The MacCormack scheme has also

been optimized. For the 251 x 101 grid, the computation times

were approximately 4 seconds per time step and 2 seconds per

time step for the TVD and MacCormack schemes, respectively.

Thiz Azresponds to a data processing rate of 1.58 x 10-4 and

7.89 x 10.5 seconds per grid point per time step, respectively.

71



Table 3 compares the number of time steps, time, and

percent time step increase for the TVD scheme and MacCormack

schemes.

Table 3
Comparison of Time Step Count and Time

TVD Scheme MacCormack Scheme % Count
Rise

Count Time Count Time Rise

200 .4924 258 .4901 29.0

300 .6727 386 .6706 28.7

400 .8703 517 .8679 29.3

500 1.0667 636 1.0642 27.2

600 1.2708 752 1.2690 25.3

700 1.4765 869 1.4747 24.1

800 1.6775 985 1.6751 23.1

For the same CFL number, the MacCormack scheme has a more

restrictive time step size than the TVD scheme.

Finally, for the 251 x 101 grid, to reach a time of

1.6775, it takes approximately 35% longer with the TVD scheme

than the MacCormack scheme. This is still under 1 hour and

quite reasonable for a numerical simulation of this

complexity.
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VII. Conclusions and Recommendations

An explicit, second-order accurate, finite-volume, TVD

scheme has been developed for the Euler equations in

axisymmetric form. A summary of conclusions from the results

presented in this study and recommendations for further

investigation are presented in the next two sections.

7.1 Conclusions

Numerical simulations of the steady-state, blunt-body

problem were in excellent agreement with theory and

experimental data over a wide range of Mach numbers in terms

of shock standoff distance, bow-shock shape, and surface

pressure distributions. The calculated entropy jump was also

in excellent agreement with theory and experimental data.

Comparisons with the MacCormack scheme show that the second-

order TVD scheme better resolves the flowfield features and

has a greater stability and robustness characteristic. It was

shown that the choice of the entropy correction

parameter, 8P . affects convergence rate and resolution of

flowfield features.

Numerical simulations of the shock impingement problem

with both schemes show that the TVD scheme's ability to

resolve the complex, unsteady interactions during a blast-wave

impact on a sphere are very good. Primary and secondary

structures were resolved with the proper limiter for the
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linearly degenerate fields. These flowfield structures were

not resolved as well with the MacCormack scheme. For the TVD

scheme, comparisons of flowfield structure to Schlieren photos

form experiment were also very good.

These results suggest that the proposed TVD scheme can be

a very useful tool in the efficient calculation of accurate

solutions for the research, development and design of

hypersonic blunt-body vehicles.

7.2 Recommendations

Recommendations for further study of the TVD scheme that

are applicable to the steady-state blunt-body problem and the

unsteady shock impingement problem are:

1) a systematic study of limiters and their effect on
resolution of discontinuities,

2) extension to three-dimensional form using the
axisymmetric form as a test bed,

3) incorporation of equilibrium and non-equilibrium
effects, and

4) extension to the Navier-Stokes equations.

Difficulties anticipated with these recommendations

include:

1) loss of time accuracy and
2) increased computer memory and CPU time requirements

due to increased number of nodes and complexity of
the governing equations.
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Recommendations for further study of the steady-state

problem blunt-body problem include:

1) automatic switching from a first-order to a
second-order scheme for an impulsive start, or

2) gradual application of boundary conditions to allow
an impulsive start, and

3) further analysis of the effects of the entropy
correction function and parameter on convergence
rate and resolution.

Recommendations for further study of the unsteady shock

impingement problem include:

1) simulations for different structures - data from
nuclear blast-wave effects are important for
national security reasons

33

2) analysis and investigation into the pressure
oscillation phenomena (perhaps the Navier-Stokes
equations will remove the phenomena as it did for
Bennett et a132), and

3) development of better freestream boundary conditions
to eliminate having to track the shock.
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Appendix: Nondimensionalization

The Euler equations of motion are nondimensionalized

following the description by Beran in Reference 34. The

freestream velocity, U_, and the sphere radius, RB, are the

velocity and length scales, respectively. The freestream

conditions are specified to be scales for the temperature and

density. Consequently,

U = u'U V = V U0
x = x*RB y = y*RB

t = t'(RB/ U.)
T = T*T. p = p'p_
p = p'p.U e = e*U

The Mach number, M. = U./c., where c. is the freestream speed

of sound, is used in the boundary conditions. A more

convenient form of the Mach number is

c2 yRT_

where

I q. = u.. + v..
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The equation of state (perfect gas), p = pRT, is written in

non-dimensional form as

p'p.U2.  = p'pRTT. 
U

p'U 2 = p*T*(RT.) = p*T*( --U
p.= p'pT

Pp*Tp(TL

yM

Note that in the freestream

p.: (Yg )1

The pressure is eliminated in the equations of motion through

another approach:

p =R p(y-1) e
Cv

p= (y-l)p'e"

Note that in the freetream,

Ie" = ((y-1)yM ) '
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The definition of total energy leads to a reasonable scaling

for E.:

Et = pe + -P(u 2 + v 2 )

22( p e  
1 (u) 2 + (v*) 2 ))

E _ pe* + - p ((u*) 2  + (v') 2 )

E t = Etp*U2

Note that in the freestream,

E,* =1 + ((y-1)yM. )1i
2

The equations of motion in non-dimensional form turn out to be

the same as the dimensional equations when the asterisks are

dropped; the TVD schemes described need not be modified. The

Mach number only enters into the problem through the

specification of E. in the far field.
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